Mechanism of arylboronic acid-catalyzed amidation reaction between carboxylic acids and amines.
نویسندگان
چکیده
Arylboronic acids were found to be efficient catalysts for the amidation reactions between carboxylic acids and amines. Theoretical calculations have been carried out to investigate the mechanism of this catalytic process. It is found that the formation of the acyloxyboronic acid intermediates from the carboxylic acid and the arylboronic acid is kinetically facile but thermodynamically unfavorable. Removal of water (as experimentally accomplished by using molecular sieves) is therefore essential for overall transformation. Subsequently C-N bond formation between the acyloxyboronic acid intermediates and the amine occurs readily to generate the desired amide product. The cleavage of the C-O bond of the tetracoordinate acyl boronate intermediates is the rate-determining step in this process. Our analysis indicates that the mono(acyloxy)boronic acid is the key intermediate. The high catalytic activity of ortho-iodophenylboronic acid is attributed to the steric effect as well as the orbital interaction between the iodine atom and the boron atom.
منابع مشابه
Tungstophosphoric Acid Supported on Silica-encapsulated γ-Fe2O3 Nanoparticles Catalyzed Oxidative Amidation
We have used tungestophosphoric acid to catalyze oxidative amidation reaction from benzyl alcohols and methylarens with hydrochloride salts of amines. To achieve this purpose, modified magnetic nanoparticles (γ-Fe2O3@SiO2@H3PW12O40) were applied as catalyst and TBHP as external oxidant. After optimizing, different derivates of be...
متن کاملMolecular-oxygen-promoted Cu-catalyzed oxidative direct amidation of nonactivated carboxylic acids with azoles
A copper-catalyzed oxidative direct formation of amides from nonactivated carboxylic acids and azoles with dioxygen as an activating reagent is reported. The azole amides were produced in good to excellent yields with a broad substrate scope. The mechanistic studies reveal that oxygen plays an essential role in the success of the amidation reactions with copper peroxycarboxylate as the key inte...
متن کاملBrønsted acid catalyzed addition of phenols, carboxylic acids, and tosylamides to simple olefins.
Intermolecular addition of phenols, carboxylic acids, and protected amines to inert olefins can be catalyzed by low concentrations (1-5%) of triflic acid. Functional groups, such as the methoxyl substitution on aromatics, could be tolerated if the concentration of triflic acid and the reaction temperature are controlled appropriately. This reaction provides one of the simplest olefin addition m...
متن کاملMechanistic insight into benzenethiol catalyzed amide bond formations from thioesters and primary amines.
The influence of arylthiols on cysteine-free ligation, i.e. the reaction between an alkyl thioester and a primary amine forming an amide bond, was studied in a polar aprotic solvent. We reacted the ethylthioester of hippuric acid with cyclohexylamine in the absence or presence of various quantities of thiophenol (PhSH) in a slurry of disodium hydrogen phosphate in dry DMF. Quantitative conversi...
متن کاملSuzuki-Miyaura cross-coupling reaction catalyzed using highly efficient CN-dimeric ortho-palladated complex under microwave irradiation and conventional heating
Suzuki cross-coupling reaction of different aryl halides with arylboronic acids was successfully carried out in methanol using ortho-palladated complex of 2-methoxyphenethylamine. All substrates afforded the corresponding products in good to high yields in the presence of low amounts of this complex as efficient and active catalyst. Application of microwave irradiation improved the yields of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Organic & biomolecular chemistry
دوره 11 13 شماره
صفحات -
تاریخ انتشار 2013